当前位置:

OFweek激光网

激光器

正文

可调谐二极管激光器探索微结构和纳米结构

导读: 微结构和纳米结构对于基础研究和应用量子技术变得越来越重要。该结构的突出应用实例是微腔和量子点,重要的应用实例包括单个或纠缠的光子源、量子计算机的量子位和各种传感器。

微结构和纳米结构对于基础研究和应用量子技术变得越来越重要。该结构的突出应用实例是微腔和量子点,重要的应用实例包括单个或纠缠的光子源、量子计算机的量子位和各种传感器。这些结构还能够使得量子极限下的研究变成可能,例如微腔中的量子振荡、量子点的量子电动力学(QED),或者甚至在空腔中具有单量子点的腔QED 研究。

许多应用需要具有合适的可调谐连续波(CW)激光器的共振光学激发。通过以正确的波长光学泵浦微腔,甚至可以产生微观的相干频率梳和短的光脉冲——这是一项非常有前景的应用,有望对光电子学产生重大影响。

微腔

由于环境的去相干,在宏观物体中通常观察不到量子特性,除非使用特定的样品几何形状和冷却。例如使用微腔,是在相对较大的微米级结构中观察量子效应的一种可能性。图 1展示了一种隔离的、直径约 30μm的环形玻璃微腔,结合了宏观机械振荡器和环形高 Q 光学腔。光经由倏逝场耦合到空腔中,通过全内反射从环形壁反射,通过辐射压力在结构上传递小的力。

通过这种方式,耦合的光可以影响结构的振动特性,反之亦然。该特性使得微腔成为量子研究中激动人心的研究对象。例如,研究人员观察到光和机械振荡之间的参数耦合,并且还使用基于光学机械耦合的传感器,对这种微腔进行主动反馈冷却。

由于其小尺寸,微腔的自由光谱范围相对较大,微小的尺寸偏差将导致腔谐振出现大的光谱偏移。因此,宽范围的无跳模可调谐激光器是发现和研究微腔共振频率,或扫描腔的一个以上自由光谱范围的重要工具。此外,激光器必须在功率和频率上具有低噪声,以避免有害的杂乱无章的机械振荡。

微腔谐振频率对尺寸和其他环境参数的依赖性,有望开发用于有前景的应用 :溶液中单个生物分子的无标记检测。使用微型光学谐振器结合宽范围的无跳模激光器(例如 Toptica公司的 DLC CTL),使得上述应用成为可能。研究人员已经描述了这样的激光器如何被频率稳定到微型光学谐振器,并且观察到由结合到谐振器的分子引起的光共振频率如何移动。通过这种方式,检测并区别出半径在2~100nm 之间的粒子。

该结果进一步拓展到用于非侵入性肿瘤活检测定,以及为溶液中的光学质谱仪提供依据。对于这种应用,不仅需要宽范围的无跳模调谐,而且能够方便地将激光器稳定到微腔。例如,CTL 激光器具有内置的全数字稳定电子器件,并且可选择使用高带宽模拟或快速数字锁定电子器件。

基于微谐振器的频率梳

微谐振器也越来越多地被用于产生光学频率梳。由于导引光场的小模式体积和高达 1010 的高 Q 因子,这些谐振器的强度变得非常高,使得非线性效应变得非常强烈。微谐振器可以通过非线性四波混频将 CW 激发光转换成其他频率分量,从而产生频率梳(见图 2)。

所得到的频率梳的性质,在很大程度上取决于泵浦激光波长,因为CW 激光器可以激发非相干高噪声状态以及孤子态。孤子态是有利的,因为所得到的频率梳是相干的并且具有极低噪声、窄线宽和短脉冲。如果从较高频率到较低频率扫描泵浦激光器,将发生不同孤子态间的急变阶段。每个阶段对应于在微谐振器中循环的孤子数量的连续减少。通过反馈至激光器,可以在其中一个阶段稳定微型梳,从而允许稳定的孤子操作。图 3所示为由可调谐二极管激光器泵浦氮化硅(SiN ;见图 4)制成的这种微腔的光学单孤子光谱。

基于晶体的微谐振器特别有前途,因为它们具有最高的 Q 因子。迄今为止,它们只是用低噪声光纤激光器泵浦。这种光纤激光器不是宽调谐的,而传统的可调谐二极管激光器由于噪声较高而不合适。然而,新一代连续可调谐二极管激光器现在具有超低噪声电流驱动器和激光谐振器,允许低于 10kHz 的窄线宽和低漂移。使用这些可调谐二极管激光器,甚至可以泵浦基于晶体的微型频率梳。通过高带宽主动频率稳定,激光器的线宽可以降低到 1Hz 的水平,以研究泵浦激光器的噪声对微型频率梳的影响。

表征微谐振器中的色散,对于设计具有理想特性的器件是极其重要的。在这里,最终的工具是锁定到以非常受控的方式移动的稳定梳无跳模可调激光器。

量子点

半导体量子点在三维尺寸上具有纳米尺寸,使得它们的电子状态由于紧约束而被量化。这些量子点也显示出其他的类单原子特性,如较强的光子反聚束和近寿命极限的线宽,通常被称为人造原子。它们是有趣的系统,可用于实现量子位,并且由于半导体加工已被很好地理解,半导体量子点是可扩展量子计算机尤为有希望的候选者。与实际原子不同,半导体量子点可以以固态的方式生长,像光子晶体腔和波导等其他结构可以在其周围构建(见图 5)。

量子点状态的共振光学激发,对于相干状态的操纵和检测而言尤为重要。然而,由于本征随机生长过程,所有量子点的尺寸略有不同,因此具有不同的光学共振频率。为了发现和共振激发单个量子点的光学跃迁,宽范围、无跳模的可调谐窄带激光器是理想的工具。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,除OFweek官方账号外,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

  • 激光工程
  • 研发工程
  • 光学工程
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: