侵权投诉
订阅
纠错
加入自媒体

中科院深紫外固态激光源光电子能谱仪系列装备简介

2013-03-07 10:34
路过的码农
关注

  1、引言

  先进材料,包括关联电子系统和复杂材料、磁性材料和自旋电子学材料、纳米结构和纳米材料等,是现代凝聚态物理研究领域异常活跃的前沿课题。一方面,这些材料的应用将直接在能源、信息技术和环境等与国计民生密切相关的领域产生巨大影响,如对新兴的自旋电子学的研究,将对研发新一代的信息技术具有至关重要的意义。另一方面,这些新材料和新的物理现象本身也为新的科学突破提供了契机,如在强关联电子系统中,因为电子)电子的强相互作用,尤其是电子、自旋、晶格及电子轨道之间的相互关联,导致一系列奇异的量子现象,比如铜氧化合物中的高温超导电性、锰氧化合物中的庞磁电阻特性等。尽管高温超导电性已被发现20多年,但导致高温超导的机理目前仍不清楚,成为凝聚态物理研究中的最重要物理问题之一。

  尖端科学仪器的研发对促进凝聚态物理的发展和新理论的建立起着至关重要的作用。光电子能谱技术正是研究高温超导体等先进材料微观电子结构的高尖端实验手段。由于任何材料的宏观物理性质都由其微观的电子运动过程支配,所以要了解、控制和利用先进材料中众多的新奇物理现象,就必须首先研究它们的电子结构。众所周知,要完全描述材料中电子的状态,需要获得能量(E)、动量(K)和自旋(S)3个基本的参量,光电子能谱技术是所有实验手段中唯一能直接测量这些参量的实验手段,所以它在强关联电子体系和其他先进材料的研究及理论发展中处于非常突出的地位。

  深紫外激光在光电子能谱技术中的应用,为光电子能谱技术的发展开辟了一个新的途径。在中科院物理所2006年成功研制的国际第一台超高能量分辨率角分辨光电子能谱仪中,通过使用真空紫外激光这一新的光源,实现了能量分辨率优于1meV的梦想,获得的激光强度比现有的同步辐射光源提高了2-3个量级,采用真空紫外激光对应的样品探测深度比通常的同步辐射提高一个量级,解决了长期困扰光电子能谱技术的表面敏感问题,把已有的光电子能谱技术提升到一个新的水平。同时,深紫外光源在建设成本和运行费用上,显著低于同步辐射光源的开支,为光电子能谱技术的普及和推广创造了条件。基于此,利用具有完全自主知识产权的深紫外激光光源技术,在2007年设立的国家重大科研装备“深紫外固态激光源前沿装备研制”中,由中科院物理所牵头开展了“基于深紫外激光的同时具有自旋分辨和角分辨功能的高分辨光电子能谱仪研制”、“光子能量连续可调深紫外激光光电子能谱仪研制”、“基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪研制”等深紫外固态激光源光电子能谱仪系列装备的研制工作。

  2012年4月18日,中科院计划财务局组织专家对上述3个项目进行验收,验收专家一致认为:

  “基于深紫外激光的同时具有自旋分辨和角分辨功能的高分辨光电子能谱仪研制”项目首次将我国科学家自主研制的深紫外激光光源应用于自旋分辨(角分辨光电子能谱技术中,利用深紫外激光的超高能量分辨率、超高光束流强度等特点,获得了2.5meV的自旋分辨能量分辨率,这是目前国际上报道的最高水平。另外,在自旋分辨(角分辨光电子能谱系统中,安装了两个莫特型自旋探测器,从而可以实现同时测量x,y,z三个方向的电子自旋极化。该系统还具有激光偏振可调(线偏振可调和圆(椭圆偏振可调),样品极低温,样品原位处理和制备等功能,是一套具有独特性能的世界领先的角分辨(自旋分辨光电子能谱系统。该仪器的研制成功,将为与自旋相关的先进材料和凝聚态物理领域的研究提供又一个新的非常重要的手段。

1  2  3  4  5  6  7  8  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号