侵权投诉
订阅
纠错
加入自媒体

光学领域伟大的人物之一叶军:光阴的故事

2013-05-25 09:34
雷本祖
关注

  在1967年召开的第13届国际计量学大会上,秒的定义进入原子时代:1秒钟被定义为铯原子电子9192631770次的固有微小振荡频率,这个标准一直沿用至今。根据量子原理,同一原子的电子在不同能量态之间跃迁时所释放的电磁波是恒定的,所以可以用这种频率作为时间间隔的精确依据。

  时间测量的精度也在不断提高。1350年,第一座机械闹钟出现在德国。1583年,伽利略发现单摆的摆动周期与振幅无关,这是时钟历史上的一大进步。1656年,荷兰天文学家、数学家惠更斯提出了单摆原理并制作了第一座自摆钟,从此,时钟误差可以秒来计算。到1762年,最好的机械表已经能够达到每3天才差1秒钟的精度,但在航空、航海和物理学研究领域还需要更精确的计时。

  1945年,美国纽约哥伦比亚大学物理学家拉比提出用原子束磁共振技术来做原子钟的概念。1948年,NIST用氨分子作为磁振源,制成了世界上第一台原子钟。1952年,NIST制成第一台铯原子钟,将之命名为NBS-1(是以当时的美国国家标准局〈National Bureau of Standards〉命名,简称NBS),这一命名规则一直延续到1975年的NBS-6。现在存放于NIST的铯原子钟为NIST-F1,精度为3000万年差一秒。

  还有没有比这更精确的时钟呢?物理学家们上下求索。锶原子能级跃迁的速度比铯原子快1000倍,从理论上讲,锶原子钟比铯原子钟更准确,但是,锶原子钟制作落后于铯原子钟,因为测量频率如此之快的“滴答”声非常困难。

  叶军做到了。为了建造更准确的锶钟,他的小组用激光束创建了一个电磁波晶格,将锶原子捕获在这个晶格中,然后,用另外一束探测激光照耀在晶格上,调整这束激光的频率直至它与锶原子电子的振荡一致。这种激光的共振可以被测量出来,从而提供了一种新的时间测量基准。

  采用同样的原理,日本科学家曾在2005年创建出一台锶原子钟,但是这台钟对频率的测量误差为27赫兹。叶军的研究小组建造了更稳定的激光晶格,能够让光晶格更牢固,从而阻止锶原子因移动而干扰信号,他们的成果发表在2007年3月出版的《物理评论快报》(Physical Review Letters)上,其频率的不确定性被减小到0.4赫兹, 测量误差减小到1.1赫兹。

  “将小数点往后移一位,你就会发现新的真理”

  以前,卡尔·蔡司研究奖都颁发给具有很强应用前景的研究项目,如对眼睛的光力学治疗技术或蓝光二极管的发明,但2007年度的获奖成果却是纯粹的基础研究。

  “叶军的这项工作至今还没有工业应用的概念。但他在诺贝尔奖获得者工作上拓展出的速度和实验技术让我们深深着迷,而且他已经将这一成果应用到了相关研究领域。”卡尔·蔡司公司研究和技术部高级副总裁Augustin Siegel 在解释评审委员会的决定时说。

  我们为什么需要如此高精度的时钟?它对人类的日常生活有什么影响?

<上一页  1  2  3  4  下一页>  余下全文
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号