侵权投诉
订阅
纠错
加入自媒体

基于非线性微腔的芯片化超快脉冲激光器

2013-06-08 00:04
龙凰
关注

  ——基于非线性微腔的芯片化超快脉冲激光器——利用“滤波器驱动-四波混频”腔型设计,研究人员得到了尺度相当于芯片大小、自启动、窄线宽、低噪声的超快脉冲激光器

  超快脉冲激光器产生50年来,在各个领域发挥着极其重要的作用。这些领域包括信息交换、疾病监控和治疗、材料加工等。利用被动锁模技术(特别是克尔透镜锁模技术),目前人们可以得到的最短激光脉冲宽度在几个飞秒量级,脉冲重复频率范围大约在10~100MHz。最近,光频梳技术在度量学、电信、微芯片计算等众多领域等应用对超快脉冲激光器的重复频率提出了更高的要求。使用重复频率大于10GHz的超快脉冲激光作为工具,可以在这些应用领域中得到更好的测量结果。

  获得高脉冲重复频率的传统途径为缩短激光器的腔长。重复频率为10GHz的锁模激光器对应的腔长仅为十几毫米,这样短的腔长使得获取超快脉冲激光较为困难;另一种途径被称为“四波混频激光器”设计,由Yoshida等人在1997年实现。“四波混频激光器”中包含了两个腔体结构,主腔和非线性腔,非线性腔插入在主腔当中。通过对主腔进行泵浦,可产生连续激光。连续激光进入非线性腔后,在其中多次往返,产生四波混频。四波混频产生的各频率成分具有固定的相位关系,经过相干叠加后,最终输出超快脉冲激光。和传统锁模激光器相比,四波混频激光器的脉冲重复频率和总腔长无关,由非线性腔决定,主腔内同时存在多个脉冲。非线性腔后有一个滤波器,来滤掉由于非线性效应产生的不必要的波长成分。通常情况下,为了维持多脉冲的稳定增益及相关的自相位调制等,主腔长度一般较长,这使得主腔纵模模式频率间隔小,造成非线性腔中同时存在的模式数较多,各个模式的相位并非完全一致,从而导致传统的“四波混频激光器”工作稳定性较差。

  Peccianti等人利用芯片化高Q非线性微腔,同时实现了滤波器和非线性腔的功能。这样的设计大大简化了“四波混频激光器”的结构。Peccianti所采用的结构被称为“滤波器驱动-四波混频激光器”。滤波器驱动-四波混频激光器相对于传统的四波混频激光器主要有以下优势:1) 其效率更高。传统的四波混频激光器的非线性腔和滤波器是分开的两个器件,非线性腔通常插入在主腔中激光能量最高的部分,滤波器位于非线性腔之后,用来滤掉由于非线性效应带来的对结果不利的光谱展宽成分。而在滤波器驱动-四波混频激光器中,非线性腔和滤波器合为一体,由于滤波作用的存在,四波混频过程中不存在不必要光谱展宽引入的能量损耗,使得整个激光系统更为高效。2) 由于滤波器和非线性腔合为一体,使得滤波器驱动-四波混频激光器的主腔长度明显缩短,相应地,主腔纵模模式频率间隔变大,非线性腔中存在的模式数也大大减少(最理想的情况为非线性腔中仅存在一个主腔纵模模式),从而大大提高了激光器工作的稳定性。3) 滤波器驱动-四波混频激光器可以产生窄线宽的超快激光脉冲,此点可大大提升光频梳应用中的工作精度。

1  2  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号