侵权投诉
订阅
纠错
加入自媒体

高功率单模光纤激光器最新进展分析

2017-07-26 10:20
小鱼时代
关注

横模不稳定性

掺镱(Yb)光纤是高功率单模光纤激光器的典型主力介质。但超过一定的阈值,它们将显示出全新的效应,即所谓的横向模式不稳定性(TMI)。在特定功率水平下,突然出现高阶模式或甚至包层模式,能量在这些模式之间动态传递,并且光束质量降低。光束在输出端开始波动。

自从发现 TMI 以来,已经在从阶跃折射率光纤到光子晶体光纤的各种光纤设计中观察到 TMI。只有其阈值随几何形状和掺杂而变化,但粗略估计,这种效应在输出功率超过 1kW后才显现。与此同时,该效应与光纤内部的热效应相结合,与光致暗化效应有很强的相关性。此外,光纤激光器对 TMI 的敏感性似乎受到纤芯模态组成的影响。

阶跃折射率光纤的几何形状产生了许多用于优化的参数。纤芯直径、泵浦包层的尺寸,以及纤芯和泵浦包层之间的折射率差异,都可以调整。这种调谐取决于掺杂浓度,也就是说,Yb 离子的浓度可用于控制激活光纤中泵浦辐射的吸收长度。 可以添加其他掺杂剂以减少热效应,并控制折射率阶跃。

但有一些相反的要求。为了减少非线性效应,光纤应该更短。然而,为了减少热负荷,光纤应该更长。光致暗化随着掺杂浓度的平方增加,因此具有较低掺杂的较长光纤将更好。

有关这些参数的最初建议,可以在模拟中发现。一些参数,例如热行为,可以模拟但难以预测,尤其是因为光致暗化很低,并且不能通过加速测试来测量。因此,直接测量光纤中的热行为,将有助于实验的规划。

对于典型的有源光纤,图 2 给出了从光纤放大器内部同时分布式温度测量提取的测量热负荷与模拟热负荷的比较。为了准确地预测纵向温度曲线,假定仅有 2dB/km 的额外损耗,这显示了非常低的损耗。

光纤设计的另一项重要参数是截止波长,这是允许在激活纤芯内有更多模式的最长波长。不支持大于该波长的高阶模式。

除了光纤本身的性质之外,还有几种方式来影响放大过程和损耗机制,例如光纤弯曲或种子光束的时间特性和光谱特性。

面向千瓦级功率的新光纤的测试

在深入模拟之后,在最近的实验中生产和检查了两种类型的掺 Yb 光纤。光 纤 1 的纤芯直径为 30μm,并且共掺了磷和铝。与光纤 1 相比,光纤 2 具有较小的 23μm 直径,并且共掺水平较低,但含有更多的镱,以实现略高的折射率分布(见表 1)。

光纤 1 和光纤 2 的计算截止波长分别位于 1275nm 和 1100nm 附 近。与芯径为 20μm、数值孔径(NA)为0.06、截止波长约 1450nm 的典型光纤相比,这要接近单模得多。放大的激光波长中心为 1067nm。

两种光纤都已经在高功率泵浦方案中进行了测试(见图 3)。泵浦二极管激光和种子信号被自由空间耦合到光纤中,光纤制备有熔接的端帽和水冲洗接头,在静止水浴中用于冷却。种子是相位调制的外腔二极管激光器(ECDL),其被预放大,以实现1067nm 的 10W 种子功率和 180pm 的光谱线宽。

在光纤 1 的测试中,在 2.8kW 的阈值下,在毫秒级上观察到突然的波动,这可以归因于 TMI。长度为30m、种子线宽相同的光纤 2,被泵浦到 3.5kW 的输出功率,受到 SBS而非 TMI 限制。

在第三个实验中,修改种子激光光谱,通过光谱展宽到比以前实验更高的程度,来提高光纤的 SBS 阈值。为此,将具有 300pm 移动中心波长的第二个二极管激光器与第一个二极管激光器组合。这种干扰导致时间跳动,由于自相位调制,使得带宽随功率增加。在与之前相同的主放大器中,获得非常相似的输出功率值和 90%的斜率效率,但是输出功率可以提升到4.3kW,而没有任何 TMI 的迹象(见表 2)。

测量挑战

测量高功率光纤激光器的所有方面是一项主要工作,需要专门的设备进行多项不同的任务。对于光纤的完全表征,确定了掺杂浓度、折射率分布和光纤纤芯衰减。 例如,测量不同弯曲直径的纤芯损耗,对于与 TMI阈值的相关性是有价值的。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号