侵权投诉
订阅
纠错
加入自媒体

激光技术全面解析

  (2)、金属蒸汽的中性原子激光与离子激光

  a、中性原子激光

  Au,Cu,Ba,Sn,Pb,Zn等金属的蒸汽,都是中性原子激光的主动介质。它们的蒸汽中,常混入低压力的惰性气体,以提高放电效率。铜蒸汽激光商品可产生100W以上的绿光(511 nm)及黄光(578 nm),金蒸汽激光则可得数十瓦的红光 (628 nm)。

  这两种激光有很多用途,例如血紫质衍生物(Hemoporphyrin derivative)吸收光谱的峰值约为628 nm,而癌细胞能吸收此物质。此物质受到628 nm的激光光照射后会分解,产生可杀死癌细胞的物质。不过,铜蒸汽激光激发染料激光,也可得到这种光,而不必依靠金蒸汽激光。此外,578 nm的激光可以除去某些胎记,效果优于用氩离子激光。

  b、离子激光

  金属蒸汽离子激光中,氦镉(He-Cd)激光是最主要的,氦硒(He-Se)、氦锌(He-Zn)等激光为此家族中之成员。氦镉激光的325 nm紫外线,和441.6 nm蓝光,是最常见的输出。加上特殊设计时,它可同时产生红光(635.6及636.0 nm)和绿光(533.7及537.8 nm)。它的短波长成分,在信息处理方面很有用。适当调配各波长的输出,几乎可以产生所有可见光的颜色,因而它的白光激光产品也是有名的。储存密度及鉴别能力的提高,使它在量度、检验、记录、印刷等方面有许多应用。

  (3)、分子气体

  二氧化碳激光和氮气激光是最常见的分子气体激光,其主要激光光分属红外线(10,640 nm)及紫外线(337 nm)。生物组织中的水分会吸收它的10,640 nm激光光,所以能用于手术,所需激光光功率约为50W。此外,非金属材料的加工、金属表面的热处理、光谱学及光化学研究、环境遥测、测距、激发其他激光、产生离子体(俗称电浆;Plasma)等,也都可用二氧化碳激光来进行。

  氮气激光的紫外线激光光,适合激发染料激光,及使多种物质产生荧光,而可用于检验及研究工作。其缺点在于效率及功率均低,每个脉波的能量大约只有10mJ,平均功率约为数百mW。

  (4)、准分子(Excimer)激光

  准分子一词的原意,是「两个同种原子组成,而只存在于受激态的分子」,如稀有气体分子He2、Ar2、Xe2等;其英文原名为 Excited Dimer 组合成的术语。现在已经将它的适用范围放宽,以包括「不存在于基态,只以受激态呈现的任何双原子分子(有时还包括三原子分子)」。重要的准分子激光,以稀有气体的卤化物为主动介质,如ArF, KrF, XeF, KrCl, XeCl等。因为受激态常以星号(*)上标表示,所以有些数据上写成ArF*等。

  准分子不会自然出现,而是在气体混合物中放电时形成的。此外,用电子束撞击,或在导波管型装置中以微波激发,也都可以造成准分子。它的激光光来自准分子解离成原子的电子跃迁,所以其激光光属紫外线,应用于精细蚀刻(如电路制程)、化学蒸着(Chemical vapor deposition)、化学反应研究及医疗上的用途较多。这些应用中,有的是以准分子激光激发可变频激光之后进行的。

  商品以ArF, KrF, XeCl, XeF等准分子居多,激光光频率分别是193、249、308、350 nm。

  4、化学激光(Chemical laser)

  由化学反应造成居量反转的激光,称为化学激光。

  在化学、军事、材料研究与生物医学方面,都有化学激光发挥所长之处。例如氟化氢激光的光束可能是骨科手术所需要的。氟化氢激光中的反应可表示为2F2 + H2 →2HF* + F2,其实它的细部反应是链式反应:F + H2 →HF* + H ,F2 + H → HF* + F,而且可用放电使反应启动。另外的例子是C2N2 + O2 →2CO + N2 +127 kcal。DF, HCl, HBr 等亦有类似作用。

  化学激光的波长

  5、半导体激光(Semiconductor laser)

  半导体激光是用半导体制成的,其构造及电性质为二极管(Diode),也就是具有两个外接电路端点,分别位于其中的p型与n型部分,其间有个接面(Junction)。因此,半导体激光又名半导体二极管激光(Semiconductor diode laser)或二极管激光(Diode laser)。

  电流较低时,它成为发光二极管(Light emitting diode;LED),发出自发射的光;电流够大的时候,才能造成自由电子的居量反转。另一方面,制程中适当的步骤使二极管两端具有相当高的反射率,就具备激光所需要的条件。

  半导体激光技术的研发,使半导体激光成为效率很高的激光,但散热仍是重要问题。此外,端射型及面射型激光数组的研发,使系统产生的光束在能量及控制方面提升许多。随着半导体种类的扩增,半导体激光能产生的波长,也不断增加。下表列出几种室温下操作的半导体激光的波长数据。

<上一页  1  2  3  4  5  6  7  下一页>  余下全文
声明: 本网站所刊载信息,不代表OFweek观点。刊用本站稿件,务经书面授权。未经授权禁止转载、摘编、复制、翻译及建立镜像,违者将依法追究法律责任。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    激光 猎头职位 更多
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号