激光制冷的发展、应用及其它制冷技术
三、激光制冷应用与展望
首先,得介绍一下,在二十世纪七八十年代以后,科学家们在实验室能够达到的最低温度可用μK作单位的温度了。可想而知,激光冷却与我们科学研究的意义。激光制冷的优点是可冷却温度低,但其也有局限性,因为其可冷却空间极小。
激光制冷技术早期的主要目的是为了精确测量各种原子参数,用于高分辨率激光光谱和超高精度的量子频标(原子钟),后来成为实现原子玻色-爱因斯坦凝聚的关键实验方法。虽然早在20世纪初人们就注意到光对原子有辐射压力作用,只是在激光器发明之后,才发展了利用光压改变原子速度的技术。激光冷却有许多应用,如:原子光学、原子刻蚀、原子钟、光学晶格、光镊子、玻色-爱因斯坦凝聚、费米子凝聚态、原子激光、高分辨率光谱以及光和物质的相互作用的基础研究等等。然后还有最近的超冷分子,其为量子计算机的制造提供了可能性依据。
玻色-爱因斯坦凝聚
提到激光制冷就不得不提到BEC(Bose-Einsteincondensation)玻色-爱因斯坦凝聚。早在1924年印度物理学家玻色提出以不可分辨的n个全同粒子的新观念,并且将这篇论文寄给了爱因斯坦,进过对这一问题进行研究之后,预言当这类原子的温度足够低时,会有相变-新的物质状态产生,所有的原子会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色-爱因斯坦凝聚。
但由于一直无法使物质接近接近绝对零度,从而一直未观察到此状态。之后,从20世纪90年代以年来,由于大家所熟知的三位物理学家(Chu(朱棣文),Cohen,Phillips)的杰出工作,激光冷却与囚禁中性原子技术得到了极大发展,为玻色-爱因斯坦凝聚奇迹的实现提供了条件。直到1995年,人们从实验室获得了这一状态。
图片新闻
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论