光纤激光人才急缺:美国建培训中心培养专业人员
泵浦耦合的重点在于将泵浦光耦合进入内包层,使它与光纤的吸收相匹配,进入纤芯产生粒子束反转,获得纤芯内的受激辐射。基于光纤内的掺杂以及光纤长度,纤芯具有不同的增益。这是设计所需要的泵浦结构所需要考虑的问题。
单模光纤中会存在功率限制。单模光纤纤芯具有很小的横截面积,结果可以通过高强度光。在高功率密度时,非线性布里渊散射将变得非常严重,限制kW量级输出功率。如果输出足够高,那么光纤端面将受到损坏。
光纤激光器的特性
光纤作为工作介质拥有很长的作用长度,有利于二极管泵浦,也使得光子转换效率很高,为紧凑、坚固的设计提供了条件。当光纤器件都熔接到一起,就不会有分立的器件需要调节。
有一些特殊结构的光纤激光器。光纤激光器可以实现单通道放大,其可以同时放大不同波长光广泛应用于通信领域。光纤放大也用于MOPA结构,目的是产生更高功率的激光输出。另一个例子是光纤放大自发辐射光源。还有一个例子是拉曼光纤激光器,一些新的研究正使用氟化物玻璃光纤代替传统的石英光纤。
然而,通常使用石英玻璃来制作光纤。主要的掺杂元素有镱(Yb)和铒(Er)。Yb中心波长在1030~1080nm间,能获得宽波段的激光输出。Yb没有像Nd一样在很高的密度下产生自猝灭效应,即使它们能产生相似波段的激光,Nd被用于传统激光器Yb却被用于光纤激光器。
掺铒光纤激光器工作波长为1530~1620nm,属于人眼安全波段。可以倍频产生780nm的激光,这是不能以其他方式获得的波段。而且Yb可以与Er一同掺杂,这样Yb吸收泵浦光并传输能量到Er。铥是另外一种掺杂元素能够产生近红外波段(1750~2100nm)的激光,也是一种人眼安全材料。
高效率
光纤激光是准三能级系统。光子受激跃迁从基态到较高能级,然后光子再跃迁到亚稳态能级,产生激光。这个过程十分高效:如使用940nm泵源泵浦掺Yb光纤,产生1030nm激光的量子数亏损(损耗能量)仅有9%,如表1所示,而用808nm泵源泵浦Nd离子,量子数亏损约为24%。Er能在1480或980nm波段被泵浦,后者不是那么高效,但更为实用。
总的来说激光效率由两个因素决定。第一是泵源的效率。半导体激光器的电-光转换效率在50%左右,在实验室可达到70%或更高。当泵浦光和激光的吸收峰匹配良好,那么得到的就是泵浦效率。第二是光-光转换效率。在小光子缺陷、高激发、高提取效率的情况下,可获得光-光转换效率60%~70%,此时电-光效率25%~35%。
图片新闻
最新活动更多
-
限时免费立即试用>> 燧石技术,赋光智慧,超越感知
-
7.30-8.1马上报名>>> 【展会】全数会 2025先进激光及工业光电展
-
精彩回顾立即查看>> 筑梦启光 砺行致远 | 新天激光数字化产研基地奠基仪式
-
精彩回顾立即查看>> 抗冻不流汗——锐科激光『智能自冷却激光器』重磅发布
-
精彩回顾立即查看>> 宾采尔激光焊接领域一站式应用方案在线研讨会
-
精彩回顾立即查看>> 2024中国国际工业博览会维科网·激光VIP企业展台直播
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论