沈阳自动化研究所建工程实验室:激光冲击强化和3D打印
由于整体叶盘的几何形状复杂,采用胶带涂覆法进行激光冲击强化,不但耗时长,而且劳动强度大。为此,需要进行以下一些改进工作:
(1)改进现有的RapidCoaterTM系统,采用延长的喷嘴,以方便进入到整体叶盘紧密排列的叶片之间,以此法来处理像整体叶盘这样结构复杂的部件。
(2)在整体叶盘激光冲击强化间增加质量控制监控器,并集成到整体叶盘冲击强化间内;安置自动的激光束能量校准系统。
(3)为整体叶盘改进应用于RapidCoaterTM系统的涂覆层。
(4)建立满足PW 公司质量系统要求的装置与处理程序。
采用RapidCoaterTM系统,在目前的激光重复率(0.25 Hz)下使生产效率提高2~3倍;采用在ManTech研究计划下开发的提高激光重复率1~2 倍的技术,使生产效率进一步提高3倍左右;通过降低维护费用、缩短停工时间和提高工艺效率,降低了激光冲击强化的费用。这样,基本实现了使F119发动机第4级高压压气机整体叶盘激光强化时间由原来的40h以上缩短到原来的1/9~1/6和费用至少降低50%~70%的目标。
2004年,激光冲击强化技术大量用于F119-PW-100发动机第4级高压压气机整体叶盘等部件的生产,还扩展应用到F119发动机的其他几级高压压气机转子上,也应用在联合攻击战斗机的JSF120和JSF119发动机上。到2009年,75%的F119发动机高压压气机整体叶盘都经过了激光冲击处理。这一技术的应用使F-22战斗机与F119发动机的维护检查频率降低30%~50%,单位飞行费用降低,任务准备等级明显提高。
近期,在美国NAV AIR第二阶段的SBIR研究项目下,LSPT公司研究了采用激光冲击强化处理像叶片榫槽这样的激光难以进入的区域,以改进其微动磨损与微动疲劳特性。具体方法是减小激光束的尺寸、采用相似动力密度的激光产生深的压缩应力,通过关节杆将激光束交付到处理枪。在普渡大学的疲劳试验室采用Ti6Al4V叶片试样对航空发动机叶片与榫槽间微动磨损与微动疲劳情况进行了模拟。结果表明,激光冲击强化对表面应力和残余应力深度都产生了很好的影响,使疲劳寿命延长20~25倍。其收益包括降低激光系统的费用、减小激光系统的占地面积和提高抗微动疲劳的能力。
四、中国3D打印钛合金技术已走在世界前列
两年前,一架名为“SULSA”的无人驾驶飞机横空出世震惊了世界。“SULSA”由英国南安普敦大学的两位年轻工程师设计和制造,除了驱动用的马达,包括机翼、整体控制面和舱门在内的所有部件都是在2天时间里“打印”组装出来的。
也就是在短短两年时间里,3D打印技术已运用于军事和航空航天领域,造价高昂的战斗机、舰载机等也都能通过“打印出炉”了。目前我国已经具备了使用激光成形超过12平方米复杂钛合金构件的技术和能力,并在航空科研项目的设计试制中投入使用。
图片新闻
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论