3倍速!实时温度监控是如何带来更精确、高效的激光焊接的?
如今,用激光进行塑料焊接(Plastic Welding)以及锡焊(Soldering)已是一种十分常见的加工方法。非接触性、高自由度、高速度、高精密是此类方法的突出优点。然而,需要达到理想的焊接效果,总要遭遇一个灵魂拷问:怎样的加工条件是最好的?
我们都知道,假如使用放大镜将光聚焦在一张纸上,如果纸是黑色的,就很容易被点燃,白色的则相对困难,这是由其温度升高情况不同而造成的。激光加工也是一样,拿塑料焊接来说,待加工的塑料往往颜色、厚度各异,如果不去测量加工过程中物体表面的温度,则难以准确判定是否达到了预期的加工效果。对于新的待加工物来说,找到理想的加工条件就将花费很多时间。
可以说,温度信息是缩短寻找最佳加工条件周期的一项重要参数。以前,加工操作和合格判定多是通过交由经验丰富的工人来获得保障。但这种依赖于“人”的模式,显然不能满足工业发展的需求。如果能把握温度信息的反馈,就可实现“可视化”,即便是经验尚浅的人,也能进行精确高效的加工。那么下一个问题来了,我们要如何获取此信息呢?
将温度信息一滴不差的收起来
获得温度信息的唯一方法,是测量来自激光加工过程中的红外光强度。这时候,可能有些小伙伴会微微一笑,觉得事情并不困难,不过小编劝大家把刚掏出来的红外辐射温度计放回去。因为这里我们需要捕捉的,是高能量激光中那缕极其微弱的红外光,前后者的强度比率大约是一亿比一。常规操作是无效的,拥有极高灵敏度的弱光探测器才能派上用场。
此外,红外光产生与物体被照的位置是一致的。想要精确测量,观测点和照射点的形状、位置都须做到同步。然而,受制于工艺水平,目前市面上许多此类激光器的该两部分是分离的,使用时主要通过一些人为的调试来尽可能保障效果,易用性和精确性都不够理想。
话入正题,接下来小编要细说的,则是可以将以上问题都解决的优秀“焊将”——滨松激光加热光源LD-HEATER及SPOLD。
滨松激光加热光源将激光照射和红外探测都集成在了同一个激光头中。因此,不必进行光轴调整,照射和探测就可完美的同步进行。由于照射光和监控信息的光程相同,所以不管大小、近远、光的形状,观测到的都是相同的。而滨松本身十分擅长微弱光的探测,探测器的灵敏度即可以得到很好的保障。
高精度的实时温度监测技能加身后,会有怎样的直接变化呢?曾有客户反馈,在以前,新待加工物从试生产到批量生产,需半年左右(包括修正模具的时间)。配备滨松LD-HEATER后,大概仅需1/3的时间就可完成。如今,已有激光加热光源设备在客户的产线中工作了10年,且保持了0故障率。如此超高的稳定性,也为客户带来了生产效率的提升。
LD-HEATER和SPOLD有何不同?
可能大家也注意到了,这里我们提到了两个不同的名字,LD-HEATER以及SPOLD。同是激光加热光源的它们有什么不同呢?
LD-HEATER是多功能的,实时温度监测功能为其标准配置,适用于试生产时期的加工条件寻找,以及问题分析。秉承即使是不完全了解激光的人都可以使用的理念,滨松工程师在开发时也考虑了足够的安全性;而SPOLD更低廉、更小巧、更多产品系列,易于在大规模生产现场使用。它是尽可能简化了的光源,以期能集成到其他的设备中。
不过,两者在许多核心的基本性能上是相同的。除了上述的高稳定性外,最为突出的则是其内部均配备了光束整形系统,输出的直接为平顶光,保证了加工的高效以及高度均匀性。如今某知名的智能腕表生产商已将此系列激光加热光源置入了其产线中,其焊接达到的高防水性则让客户十分满意。此外,OLED屏的焊接也是目前的一个典型应用,其可进行高质量的无损拆解,这也源于激光器核心性能的保障。
简单来讲,LD-HEATER与SPOLD在生产的不同阶段扮演着不同的角色。在LD-HEATER给出加工条件后,可将相对低成本以及内嵌式的SPOLD配备入大规模生产系统,以保障已确定的加工条件与预期相同。而一旦实际生产中出现问题,也可以继续使用LD-HEATER找到问题所在。
不过,并不是所有SPOLD都配备了实时温度监测功能,客户可根据自身的需求进行选配。而此功能发挥的作用与LD-HEATER的也不尽相同,我们将此称为LPM(Laser Process Monitor,激光过程控制器)。
图片新闻
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论