侵权投诉
订阅
纠错
加入自媒体

陕西经济人物候选人刘兴胜的“激光创业梦”

     在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3°,甚至1°的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Institute)的P. Crump等通过采用大光腔、低限制因子的方法获得了30°快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80°左右(95%能量范围)降低到50°以下,大幅度降低了对快轴准直镜的数值孔径要求。

     在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10°~12°降低到7°左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7°水平。

  半导体激光标准厘米阵列发展现状

     标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术条件下制备获得1.5kW/bar阵列器件已不成问题。与此同时,具有高光束质量的低填充因子CM Bar的功率也不断提高,表1为德国Limo公司获得具有不同填充因子CM Bar的BPP比较, 由表1结果发现横向尺寸一定的半导体激光阵列器件,在发散角相同的情况下,填充因子与BPP成正比,即填充因子越低,其光参数乘积越小,光束质量越好。目前,9XX nm波段20%填充因子CM Bar连续输出功率最高可达180 W/bar,快慢轴光束质量对称化后光参数乘积可达5.9 mm?mrad,商用器件可长期稳定工作在80W以上;2.5%填充因子CM Bar连续输出功率可达50 W/bar,快慢轴光束质量对称化后光参数乘积可达2.1mm?mrad,目前这种器件还处于研发中,需要进一步提高其稳定的输出功率。然而,伴随着CM Bar功率的不断提高和高光束质量要求下填充因子逐渐减小,一系列新的问题也随之产生,特别是与之配套的低压大电流恒流电源的高成本问题以及微通道热沉散热寿命短的问题逐渐显现。

<上一页  1  2  3  4  5  6  7  8  9  下一页>  余下全文
声明: 本网站所刊载信息,不代表OFweek观点。刊用本站稿件,务经书面授权。未经授权禁止转载、摘编、复制、翻译及建立镜像,违者将依法追究法律责任。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    激光 猎头职位 更多
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号